Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation.

نویسندگان

  • Xiongwen Chen
  • Xiaoying Zhang
  • David M Harris
  • Valentino Piacentino
  • Remus M Berretta
  • Kenneth B Margulies
  • Steven R Houser
چکیده

Abnormal L-type Ca(2+) channel (LTCC, also named Cav1.2) density and regulation are important contributors to depressed contractility in failing hearts. The LTCC agonist BAY K 8644 (BAY K) has reduced inotropic effects on failing myocardium. We hypothesized that BAY K effects on the LTCC current (I(CaL)) in failing myocytes would be reduced because of increased basal activity. Since support of the failing heart with a left ventricular assist device (LVAD) improves contractility and adrenergic responses, we further hypothesized that BAY K effects on I(CaL) would be restored in LVAD-supported failing hearts. We tested our hypotheses in human ventricular myocytes (HVMs) isolated from nonfailing (NF), failing (F), and LVAD-supported failing hearts. We found that 1) BAY K had smaller effects on I(CaL) in F HVMs compared with NF HVMs; 2) BAY K had diminished effects on I(CaL) in NF HVM pretreated with isoproterenol (Iso) or dibutyryl cyclic AMP (DBcAMP); 3) BAY K effects on I(CaL) in F HVMs pretreated with acetylcholine (ACh) were normalized; 4) Iso had no effect on NF HVMs pretreated with BAY K; 5) BAY K effects on I(CaL) in LVAD HVMs were similar to those in NF HVMs; 6) BAY K effects were reduced in LVAD HVMs pretreated with Iso or DBcAMP; 7) Iso had no effect on I(CaL) in LVAD HVMs pretreated with BAY K. Collectively, these results suggest that the decreased BAY K effects on LTCC in F HVMs are caused by increased basal channel activity, which should contribute to abnormal contractility reserve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced effects of BAY K 8644 on L-type Ca current in failing human cardiac myocytes are related to abnormal adrenergic regulation

Xiongwen Chen, Xiaoying Zhang, David M. Harris, Valentino Piacentino III, Remus M. Berretta, Kenneth B. Margulies, and Steven R. Houser Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania; Duke University School of Medicine, Department of Medicine, Durham, North Carolina; Cardiovascular Research Institute, University of P...

متن کامل

BAY K 8644 modifies Ca2+cross signaling between DHP and ryanodine receptors in rat ventricular myocytes.

The amplification factor of dihydropyridine (DHP)/ryanodine receptors was defined as the amount of Ca2+ released from the sarcoplasmic reticulum (SR) relative to the influx of Ca2+ through L-type Ca2+ channels in rat ventricular myocytes. The amplification factor showed steep voltage dependence at potentials negative to -10 mV but was less dependent on voltage at potentials positive to this val...

متن کامل

L-type Ca2+ channel responses to bay k 8644 in stem cell-derived cardiomyocytes are unusually dependent on holding potential and charge carrier.

Human stem cell-derived cardiomyocytes provide a cellular model for the study of electrophysiology in the human heart and are finding a niche in the field of safety pharmacology for predicting proarrhythmia. The cardiac L-type Ca2+ channel is an important target for some of these safety studies. However, the pharmacology of this channel in these cells is altered compared to native cardiac tissu...

متن کامل

L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices.

Ca2+ influx through the L-type calcium channel (LTCC) induces Ca2+ release from the sarcoplasmic reticulum (SR) and maintains SR Ca2+ loading. Alterations in LTCC properties, their contribution to the blunted adrenergic responsiveness in failing hearts and their recovery after support with LV assist devices (LVAD) were studied. L-type Ca2+ current (I(Ca,L)) was measured under basal conditions a...

متن کامل

Bay K 8644 increases resting Ca2+ spark frequency in ferret ventricular myocytes independent of Ca influx: contrast with caffeine and ryanodine effects.

Bay K 8644, an L-type Ca2+ channel agonist, was shown previously to increase resting sarcoplasmic reticulum (SR) Ca2+ loss and convert post-rest potentiation to decay in dog and ferret ventricular muscle. Here, the effects of Bay K 8644 on local SR Ca2+ release events (Ca2+ sparks) were measured in isolated ferret ventricular myocytes, using laser scanning confocal microscopy and the fluorescen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 294 5  شماره 

صفحات  -

تاریخ انتشار 2008